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Short-Term Economic Load Dispatch of Nigerian 
Thermal Power Plants Based on Differential 
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Abstract--This paper presents the solution of short-term economic load Dispatch problems by means of the Differential Evolution (DE) algorithm. This 
approach is an evolutionary algorithm useful in solving many real world constrained optimization problems. The developed DE based economic dispatch 
solution was tested and validated on the Nigerian grid system. The results obtained demonstrate the applicability of the proposed method for solving 
economic dispatch problems on a short-term basis. 
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1 INTRODUCTION 

 he main objective of economic load dispatch of electric 
power generation is to schedule the committed 

generating units output so as to meet the load demand at 
minimum operating cost, while satisfying all the unit and 
system equality and inequality constraints. Therefore, ELD 
problem is a large scale constrained non-linear optimization 
problem. 
For the purpose of economic dispatch studies, online 
generators are represented by functions that relate their 
production cost to their power output. Quadratic cost 
functions are used to model generator in order to simplify 
the mathematical formulation of the problem and to allow 
many of the conventional optimization techniques to be 
used. The ELD problem is traditionally solved using 
conventional mathematical techniques such as lamda 
iteration and gradient schemes. These approaches require 
that fuel cost curves should increase monotonically to 
obtain the global optimal solution. The input-output of 
units are inherently non-linear with valve point loading or 
ramp rate limits and having multiple local minimum points 
in the cost function. 
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Techniques such as dynamic programming might not be 
efficient since they require too many computational 
resources in order to provide accurate result for large scale 
systems.  
But, with the advent of evolutionary algorithm which are 
stochastic based optimization techniques that searches for 
the solution of problems using simplified model of the 
evolutionary process found in nature.  
The success of evolutionary algorithm is partly due to their 
inherent capability of processing a population of potential 
solutions simultaneously, which allows them to perform an 
extensive exploration of the search space [1].  
Other evolutionary algorithm includes Simulated 
Annealing (SA), Genetic Algorithm (GA), Hybrid Particle 
Swarm Optimization (PSO) with Sequential Quadratic 
Programming approach (PSO-SQP), Evolutionary 
Programming (EP) and Artificial Bee Colony (ABC) [2], [3], 
[4], [5]. SA is designed to solve the high non-linear ELD 
problem without restriction on the shape of the fuel cost 
function. The GA can find a global solution after sufficient 
iterations, but has high computational burden. EP also 
takes a long computation time to obtain solutions. PSO 
converges more quickly than EP, but has a slow fine tuning 
ability of the solution [3]. 
Differential Evolution (DE) is a recently developed heuristic 
evolutionary method for solving constrained optimization 
problems. DE is a powerful algorithm that improves the 
population of individuals over several generations through 
the operators of mutation, crossover and selection. 
Differential Evolution offers great convergence 
characteristics and requires few control parameters which 
remains fixed throughout the solution process and requires 
minimal tuning. 
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The purpose of this paper is to present a solution 
methodology for the short-term economic load dispatch 
using the differential evolution method for a period of one 
week on the Nigerian network using the network data and 
information from the electric utility company to solve the 
problem. 
The paper is organized as follows, Section II introduces the 
ELD problem formulation, and Section III describes the 
Differential Evolution algorithm. Section IV describes the 
DE based ELD. Then the numerical experiment in Section 
V. Finally, remarks and conclusion are introduced.. 

2 PROBLEM FORMULATIONS 
Consider an interconnected power system consisting of n 
thermal power stations as shown in Fig.1, the ELD problem 
seeks to find the optimal combination of thermal power 
plants that minimizes the total cost while satisfying the 
total demand and system constraints. 
 

 
Fig.1. Interconnected power system 
 
The ELD problem is formulated as follows: 

                           )(CMin  
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Where: 

)( ii PC : Cost function of the thi unit 

iP : The power output of thi  unit 
The minimization is subject to the following constraints:  

2.1 Power Balance 
The total power generated must to be equal to the sum of 
load demand and transmission-line loss: 

(2)                                               0
1

=−+ ∑
=

n

i
iLD PPP

                                                 
 

Where: 
PD is the power demand and PL is the transmission loss. 

The transmission loss can be represented by the B-
coefficient method as: 
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Where Bij is the transmission loss coefficient 
 
2.2 Maximum and Minimum Power Limits  
The power generated by each generator has some limits 
and can be expressed as: 

maxmin
iii PPP ≤≤     i=1, 2,…………, n    (4) 

Where: 
min

iP : The minimum power output 
max

iP : The maximum power output 
The above cast problem is an optimization one. This will be 
solved using differential evolution approach and 
demonstrated on Nigerian thermal power plants for a 
typical weekly load curves, hence short-term economic load 
dispatch. 

3 DIFFERENTIAL EVOLUTION CONCEPTS 
Differential Evolution (DE) is a relatively new 

evolutionary algorithm proposed by Storn and Price (1995) 
which is simple, yet powerful, for solving complex 
optimization problems. Practical optimization problems are 
often characterized by several non-linearities and 
competing objectives. The presence of multiple objectives in 
a problem, in principle, gives rise to a set of optimal 
solutions known as Pareto-optimal solutions, instead of a 
single optimal solution (Coello, 1999). In the absence of any 
further information, it is not possible to decide which of 
these Pareto-optimal solutions is better than the other. 
Hence, the operator has to find as many Pareto-optimal 
solutions as possible from which the most suitable solution 
is chosen to meet a particular dominant requirement.  

In a DE algorithm, candidate solutions are randomly 
generated and evolved to individual solution by simple 
technique combining simple arithmetic operators with the 
classical events of mutation, crossover and selection. The 
basic evolutionary search mechanisms for DE are 
summarized in the following salient steps : 
Step 1: Initialization operation 

In DE, a solution or individual i, in generation G is a 
multi-dimensional vector given by eqn. (4): 
𝑋𝑖𝐺 = �𝑋𝑖,1, …𝑋𝑖,𝐷�                                                              (5) 

Where kiX ,  is given by eqn. (5)  
[ ] )(*1,0 minmaxmin, kkkki XXrandXX −+=              (6) 

            𝑖 ∈ (1,𝑁𝑃) 𝑎𝑛𝑑 𝑘 ∈ (1,𝐷)     
Where, NP is the population size, D is the solution’s 
dimension i.e number of control variables and rand[0,1] is a 
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random number uniformly distributed between 0 and 1. 
Each variable k in a solution vector i in the generation G is 
initialized within its boundaries Xkmin and Xkmax.  
Step 2: Mutation operation 

DE does not use a predefined probability density 
function to generate perturbing fluctuations. It relies upon 
the population itself to perturb the vector parameter. 
Several population members are involved in creating a 
member of the subsequent population. For every i ϵ[1,NP] 
the weighted difference of two randomly chosen 
population vectors, Xr2 and Xr3, is added to another 
randomly selected population member, Xr1 , to build a 
mutated vector Vi given as in eqn. (7). 
𝑉𝑖 = 𝑋𝑟1 + 𝐹 ∗ (𝑋𝑟2 − 𝑋𝑟3)                                                      (7) 
With r1, r2, r3 ϵ [1, NP] are integers and mutually different, 
and F ˃ 0, is a real constant mutation rate to control the 
different variation 𝑑𝑖 = 𝑋𝑟2 − 𝑋𝑟3.                                    
Step 3: Crossover operation 

The crossover function is very important in any 
evolutionary algorithm. In DE, three parents are selected 
for crossover and the child is a perturbation of one of them 
whereas in GA, two parents are selected for crossover and 
the child is a recombination of the parents. The crossover 
operation in DE can be represented by the following eqn. 
(8): 

𝑈𝑖(𝑗) = �
𝑉𝑖(𝑗), 𝑖𝑓 𝑈𝑖(0,1) < 𝐶𝑅
𝑋𝑖(𝑗),         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 (8)                                                               

Where, CR is the cross over rate of DE. 
 
Step 4: Selection operation 

In DE algorithm, the target vector Xi,G is compared 
with the trial vector Vi,G+1 and the one with the better fitness 
value is admitted to the next generation. The selection 
operation in DE can be represented by eqn. (9): 

𝑋𝑖,𝐺 = �
𝑈𝑖,𝐺+1 𝑖𝑓 (𝑈𝑖,𝐺+1) < 𝑓(𝑋𝑖,𝐺)
𝑋𝑖,𝐺 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  (9)                      

Where, i ϵ [1, NP]. 
 
Step 5: Verification of the stopping criterion 

Loop to step 3 until stopping criterion is satisfied, 
usually a maximum number of iterations, Gmax. . 
 

4 DEVELOPMENT OF DE BASED STELD 
 The generalized steps of the DE algorithm as presented in 
detail in section III are pertinent in its application to the 
economic load dispatch problem under consideration. As a 
first step in DE based STELD, we randomly generate an 
initial population comprising feasible power generated at 
all the on-line thermal units within the multi-dimensional 
search space. We define the initial power generated 
population matrix [𝑃𝑂] dimensioned ℛℳ𝑋ℕ𝑃  thus:  

[𝑃𝑂] = �
𝑃110 ⋯ 𝑃1ℕ𝑃

0

⋮            𝑃𝑖𝑗0 ⋮
𝑃ℳ1
0 ⋯ 𝑃ℳℕ𝑃

0
� 

𝑃𝑖𝑗0 = 𝑃𝑖𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ �𝑃𝑖𝑚𝑎𝑥 − 𝑃𝑖𝑚𝑖𝑛� 
 𝑖 = 1,2,3 … .ℳ;  𝑗 = 1,2,3 … . .𝑁𝑝       … (10)  

 Where, 𝑃𝑖𝑗0  : is the initialized 𝑖𝑡ℎ candidate power generated  
of  𝑗𝑡ℎ column of population matrix; 
′𝑟𝑎𝑛𝑑′ : is function that generates random values uniformly 
in the interval [0, 1]; 
𝑁𝑝      :   is the population size; 
ℳ      :   is the number of online generating units;  
𝑃𝑖𝑚𝑖𝑛 𝑎𝑛𝑑 𝑃𝑖𝑚𝑎𝑥 : are the lower and upper bound on the  𝑖𝑡ℎ  
generating unit, respectively. 
In each generation, 𝑁𝑝 competitions are held to determine 
the composition of the next generation via mutation, 
crossover and selection processes which are basically 
similar to those of genetic algorithm (GA).  

Mutation operations are applied in DE during 
offspring generation and of necessity play pivotal role in 
the reproduction cycle. The mutation operation creates 
mutant population vector 𝑃�𝑖

′(𝑘) by perturbing a randomly 
selected vector or best current population vector (based on 
minimum objective function value returned) 𝑃�𝑙1

(𝑘) with the 
difference of two other randomly selected vectors 
𝑃�𝑙2

(𝑘) 𝑎𝑛𝑑 𝑃�𝑙3
(𝑘) at 𝑘𝑡ℎ iteration according to eqn. (11).   

𝑃�𝑖
′(𝑘) = 𝑃�𝑙1

(𝑘) + 𝐹 ∗ �𝑃�𝑙2
(𝑘) −𝑃�𝑙3

(𝑘)�        𝑖 = 1,2,3 …𝑁𝑝               (11) 
Where,  
𝑃�𝑖
′(𝑘) : is generated 𝑖𝑡ℎ column population vector after 

performing mutation operation at 𝑘𝑡ℎ iteration; 
𝑃�𝑙1

(𝑘) ,𝑃�𝑙2
(𝑘) 𝑎𝑛𝑑 𝑃�𝑙3

(𝑘)   :  are randomly chosen vectors at kth  
iteration; 
  𝑙1,  𝑙2 & 𝑙3 ∈ {1,𝑁𝑝} :  are randomly chosen integers,  
mutually different and also chosen to be different from the  
running index 𝑖 (i.e.  𝑙1 ≠  𝑙2 ≠ 𝑙3 ≠ 𝑖).  
   𝐹 :  is scaling factor for mutation and its value is typically 
(0 ≤ F ≤ 1.2) to control amplification of the differential 
perturbation in the mutation process so as to secure good 
convergence characteristics.  
The next task after mutation operation is crossover process 
so introduced to diversify the perturbed population matrix 
for the online thermal units. Fundamentally, crossover 
operation represents a typical case of ‘genes’ exchange. 
Here, the 𝑗𝑡ℎ column target power output vector  𝑃�𝑗

(𝑘) =
[𝑃1𝑗

(𝑘),𝑃2𝑗
(𝑘) …𝑃𝑖𝑗

(𝑘) …𝑃ℳ𝑗
(𝑘) ] 𝑇  is mixed with the 𝑗𝑡ℎ column 

mutated power output vector 
𝑃�𝑗
′(𝑘) = [𝑃1𝑗

′(𝑘),𝑃2𝑗
′(𝑘) …𝑃𝑖𝑗

′(𝑘) …𝑃ℳ𝑗
′(𝑘) ] 𝑇 to create a 𝑗𝑡ℎ column 

trial power output vector   
𝑃�𝑗
′′(𝑘) = [𝑃1𝑗

′′(𝑘),𝑃2𝑗
′′(𝑘) …𝑃𝑖𝑗

′′(𝑘) …𝑃ℳ𝑗
′′(𝑘) ] 𝑇.  Thus, the procedure 

to building trial power output vector is anchored on eqn. 
(12): 
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𝑃𝑖𝑗
′′(𝑘) = �

𝑃𝑖𝑗
′(𝑘)  𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑖) ≤ 𝐶𝑅 𝑜𝑟 𝑖 = 𝑟𝑛𝑏𝑟(𝑗)

𝑃𝑖𝑗
(𝑘) 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑖) > 𝐶𝑅 𝑜𝑟 𝑖 ≠ 𝑟𝑛𝑏𝑟(𝑗) 

        (12) 

  
 Where:    𝑗 = 1,2,3 …𝑁𝑝; 𝑖 = 1,2,3 … .ℳ. 
  𝑃𝑖𝑗

(𝑘),  𝑃𝑖𝑗
′(𝑘) 𝑎𝑛𝑑 P𝑖𝑗

′′(𝑘) : are  𝑖𝑡ℎ individual of the 𝑗𝑡ℎ target 
power output vector, mutant power output vector and trial 
power output vector at 𝑘𝑡ℎ iteration, respectively;  𝑟𝑎𝑛𝑑𝑏(𝑖)  
: is  𝑖𝑡ℎ randomly generated value in the interval [0, 1];  
  𝐶𝑅 : is crossover constant 𝜖 [0,1]  that regulates the 
diversity of the population and aids the algorithm escape 
from local optima; 
𝑟𝑛𝑏𝑟(𝑗)  :is randomly chosen index ∈ (𝑖 = 1,2,3 … ,ℳ) to 
insure that the trial vector, 𝑃�𝑗

′′(𝑘) gets at least one value from 
the mutated vector, 𝑃�𝑗

′(𝑘). 
 The selection procedure is the final step of any classical 
DE algorithm. More specifically, selection procedure is 
used among the set of trial vector and the target vector to 
choose the better vector. Each solution in the population 
has equal chance of being selected as parents. Selection 
process is realized by comparing the objective function 
values of target vector and trial vector. For a minimization 
problem for example, if the trial vector has lower value of 
the objective function, then it replaces the target vector in 
the next generation otherwise the current target vector is 
retained. This is cast mathematically, using objective 
function evaluation criterion    𝐹(. ) , as follows: 

𝑃�𝑗
(𝑘+1) = �

𝑃�𝑗
′′(𝑘)  𝑖𝑓 𝐹(𝑃�𝑗

′′(𝑘)) ≤  𝐹(𝑃�𝑗
(𝑘))

𝑃�𝑗
(𝑘) 𝑖𝑓 𝐹(𝑃�𝑗

′′(𝑘)) >  𝐹(𝑃�𝑗
(𝑘)) 

                                (13) 

We have also incorporated the application of elitist 
strategy of GA to keep track of the fittest vector and the 
specification of algorithmic convergence criterion. If the 
convergence criterion is met, the power output values 
contained in the fittest vector are returned as the desired 
optimal values. With the desired optimal values of power 
output specified at the respective thermal generating units, 
the final power flow is carried out again to determine the 
active power losses, fuel cost and generating units loading 
profile.  

 
4.1 Evaluation of Fitness 
Each individual in the population is evaluated using the 
fitness function of the problem to minimize the fuel cost 
function. The power balance constraint is augmented with 
the objective function to form a generalized fitness function 

kf as given by 

 








−−+= ∑∑

==

n

i
LDi

n

i
ik pPPCf

11
µ        (14) 

     

Where µ is the penalty parameter, the penalty term reflects 
the violation of the equality constraint and assigns a high 
cost of penalty function to candidate point far from feasible 

region. The upper and lower generation limit of generating 
unit is violated then it can be fixed in the bound range by 
forcing it to lower/upper limit.  

 
 4.2 Handling of Constraints 

The reproduction operation of DE can extend the search 
outside the range of the parameters. A simple strategy is 
adopted in this study to ensure that the parameter values 
lies within the allowable range after reproduction. Any 
parameter that violates the limits is replaced with random 
values. 
 
4.3 Stopping Criterion 
The above iterative process of mutation, crossover and 
selection on the population will continue until there is no 
appreciable improvement in the minimum fitness values or 
predefined maximum number of iteration is reached. 
 
4.4 The Salient Steps of DE based ELD Realization 

 Step 1: At the initialization stage, the relevant DE 
parameters are defined. Also relevant power system data 
required for the computational process are actualized from 
the data files. 
Step 2: Run the Newton Raphson load flow to determine 
the initial load bus voltage, transmission loss and active 
power loss respectively. 
Step 3: The objective function for each vector of the 
population is computed using eqn. (13). The vector with the 
minimum objective function value (the best fit) so far is 
determined. 
Step 4: Update of the generation count. 
Step 5: Mutation, crossover, selection and evaluation of the 
objective function.  
Step 6: If the generation count is less than the preset 
maximum numbers of generations go to step 4. Otherwise 
the parameters of the fittest vector are returned as the 
desired optimum value. Hence run the final load flow to 
obtain the final value for the power loss, total fuel cost and 
the appropriate generation schedule. 

5 NIGERIAN GRID SYSTEMS 
The Nigerian national grid belongs to rapidly 

growing power systems faced with complex operational 
challenges at different operating regimes.  Indeed, it suffers 
from inadequate reactive power compensation leading to 
wide spread voltage fluctuations couple with high technical 
losses and component overloads during heavy system 
loading mode.  The standardized 1999 model of the 
Nigerian network comprises 7 generators, out of which 3 
are hydro whilst the remaining generators are thermal, 28 
bulk load buses and 33 extra high voltage (EHV) lines. The 
typical power demand is 2,830.1MW and bears technical 
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power network loss of 39.85MW.  The single line diagram 
of the 330kV Nigerian grid system is set forth in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Single line diagram of Nigerian 330kV 31-bus grid      
systems 
 
5.1Short-Term ELD for Nigerian Thermal Power Plant 
The short term ELD was carried out for a typical load 
demand profile shown in Fig.3. The 8-hourly duration peak 
demand for a period of one week was obtained from the 
daily operational reports of the transmission company of 
Nigeria.  

 
 
Fig.3. Load demand profile for a week 

 
 
 
 
 
Table 1 

Nigerian Thermal power Plants Characteristics 

 
 
 

Table 2 
 Optimum Parameter Settings for DE Based Tools 

 

6 SIMUATION RESULTS 
The results obtain for the one week are presented on daily 
basis. 

Table 3  
Economic Load Dispatch for Day 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 

 

Birnin K 

Kainji H 
Kainji P 

Jebba Jebba HT 
Jebba PS 

Oshogbo 

   9 MW 
   6 MVR 

Ayede 

Ikeja W Akangba 
Egbin HT Egbin PS 

Aja 

Shiro HT 

Ajaokuta 

Benin TS 
  0.0 MVR 

Sapele H 
Sapele P 

Shiro PS 

Kaduna 

AladjaTS 

Kano 

Jos 

Gombe 

Delta HT 
  64 MW 
  44 MVR 

Delta PS 

Onitsha 

Alaoji 

N Haven 

Afam HT 
Afam PS 
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 Economic Load Dispatch for Day 2 

 
 

Table 5 
 Economic Load Dispatch for Day 3 

 
 

Table 6  
Economic Load Dispatch for Day 4 

 
 

 
 
 
 
 
 
 
 
 
 
Table 7 

 Economic Load Dispatch for Day 5 

 
   

Table 8 
 Economic Load Dispatch for Day 6

  
Table 9 

 Economic Load Dispatch for Day 7 

 
. 
 
6 DISCUSSIONS 
The ELD was implemented on Mat Lab platform. The 
contributions of the hydro power plants to the load 
demand were fixed for each day, while ELD was carried 
out in other to determine the contribution of the thermal 
power plants for each day. The result shows the 
contribution of each of the thermal generators for the 8-
hourly period in a day. The corresponding power loss and 
the total cost of production for each period are also 
calculated. The schedule reflects the best possible 
contribution of the individual generators based on the 
demand for the given period in a day. 
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7 CONCLUSIONS 
In this paper, differential evolution method has been 
applied to schedule generators on a short term basis for the 
Nigerian thermal power plants. The result shows that this 
method is capable of being applied successfully to the 
economic dispatch problem of larger thermal power plants 
and can also be extended for longer duration say a month. 
The result shows that the generating companies can plan 
ahead of time in meeting the energy demand of their 
customers. Both customers and generating companies 
enjoys the benefit of the solution presented in this paper 
which has a positive effect on the electricity market of the 
country. The future work entails the use of load forecasting 
by means of artificial neural network to determine the load 
demand for a given period to be used for the economic load 
dispatch problem.  
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